

Radars

Francesco Cairo Istituto di Scienze dell'Atmosfera e del Clima f.cairo@isac.cnr.it

TETRAD training course, 10-18 September 2010, Hyères, France

EUF Revearch

RADAR (RAdio Detection And Ranging)

- **···** Active remote sensing instrument (like LIDARs)
- **···** First meteorological applications in 1935
- ☆ First pulsed RADAR during WWII
- **···** First Doppler application in the `70
- **···** First polarimetric applications in 1976
- ··· Operative networks established in the `80

- To detect presence, position, speed of objects (targets) by radio (cm to m) or micro (mm to cm) waves
- For meteorological RADARs the target are cloud particles and hydrometeors

•W Band: 110,000-75,000 MHz; 0.27-0.4 cm

et

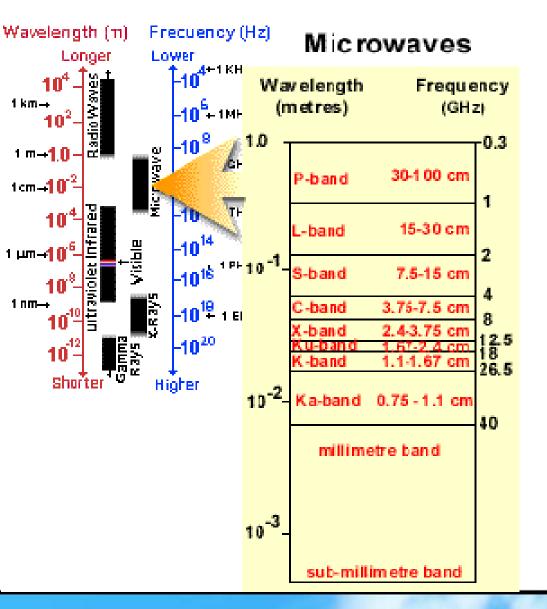
•V,Q Band: 60,000-40,000 MHz; 0.5-0.8 cm

•Ka Band: 40,000-26,000 MHz; 0.8-1.1 cm

•K Band: •26,500-18,500 MHz; 1.1-1.7 cm

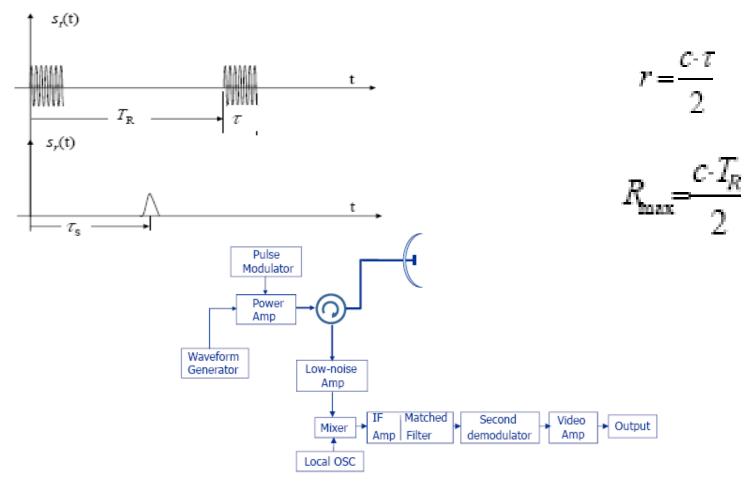
•Ku Band: •12,500-18,000 MHz; 1.7-2.4 cm

Meteorological RADARs

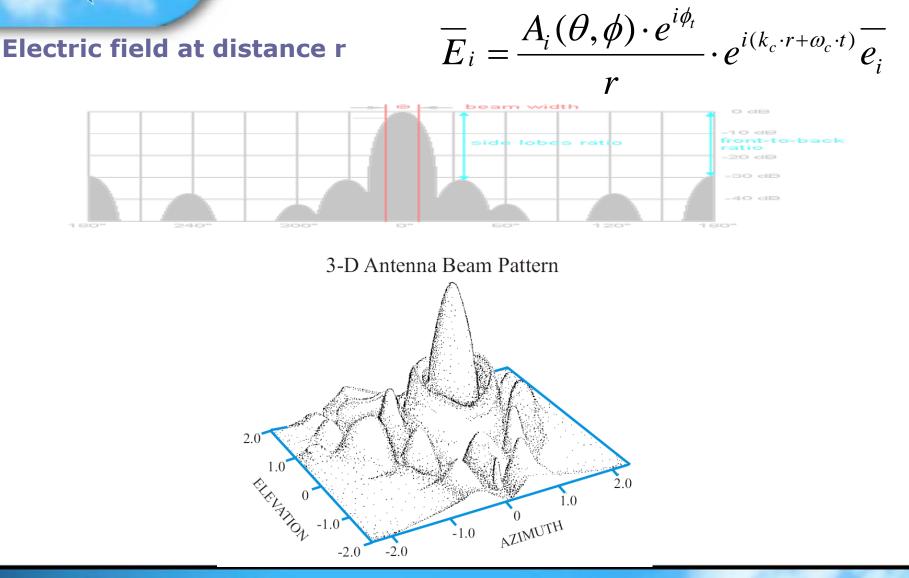


RADAR scheme

A pulsed beam is transmitted into the atmosphere



Scattering from a far object



Let's suppose interaction with a single scatterer, and neglet depolarization effects, then at the radar receiving antenna:

$$E = \frac{S(180^\circ) \cdot A(\theta_m, \varphi_m)}{k_c \cdot r_m^2} \cdot e^{i(2k_c r_m - (\omega_c - \omega_{d,m})t + \phi_{s,m} + \phi_t)}$$

Let's assume the transmitter phase and scatteres phase shift are constant.

From field to power densities

Power density over a cycle $P_t = \frac{1}{\eta_0} \overline{E_t^2}$

net

$$\frac{P_t}{4\pi \cdot r^2} f^2(\theta,\phi) \cdot G \cdot l^{-1}$$

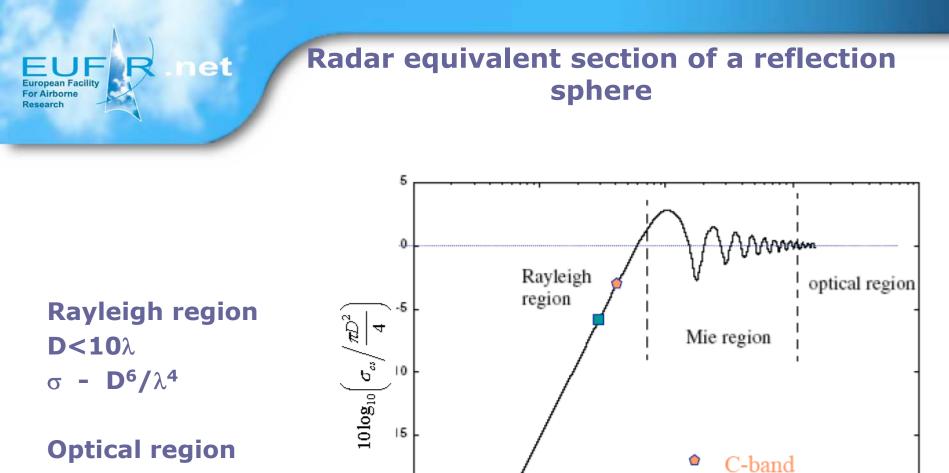
 $l^{-1} = e^{-\int_{0}^{r} k(r)dr}$

attenuation

$$P_{r,m}(r_m,\theta_m,\phi_m) = \frac{P_t f^4(\theta_m,\phi_m) G^2 \sigma_{b,m} \lambda_c^2}{(4\pi)^2 r^4 l^2}$$

$$\sigma_{b,m} = 4\pi \left(\frac{S_{2,m}(180^\circ)}{k_c}\right)^2$$

$$A_{i}(\varphi, \vartheta) = \sqrt{\frac{P_{t}G_{t}\eta_{0}}{2\pi l_{t}}} f_{t}(\varphi, \vartheta)$$



-20

-25 — 10⁻²

σ – D²

 10^{-1} 10^{0} $D\pi/\lambda$

S-band

10¹

 10^2

16

Gocce tra 1.35 e 4 mm

Т

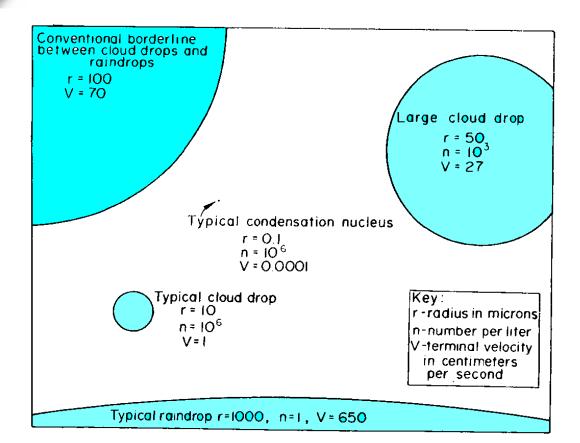


FIG. 6.1. Comparative sizes, concentrations, and terminal fall velocities of some of the particles included in cloud and precipitation processes. (From McDonald, 1958.)

... from many scatteres

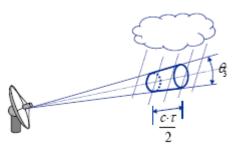
Under the assumption of single, incoherent scatterings

$$\sigma_{b,m} \Rightarrow \eta(r) = \int_{D} \sigma(D) N(D,r) dD \cdot dV$$

$$P_r(r,\theta,\varphi) = \int_{r_b}^{r_t} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{P_t f^4(\theta,\varphi) G^2 \eta(r) dV \lambda_c^2}{(4\pi)^3 r^4 l^2}$$

If the radar resolution lenght τ and the resolution volume is small, and the antenna pattern is Gaussian and symmetric

$$P_r(r) = \frac{P_t G^2 \lambda_c^2 \eta(r) c \tau \pi \theta^2}{(4\pi)^3 r^2 l^2(r) 16 \ln(2)} = \frac{C \eta(r)}{r^2 l^2}$$

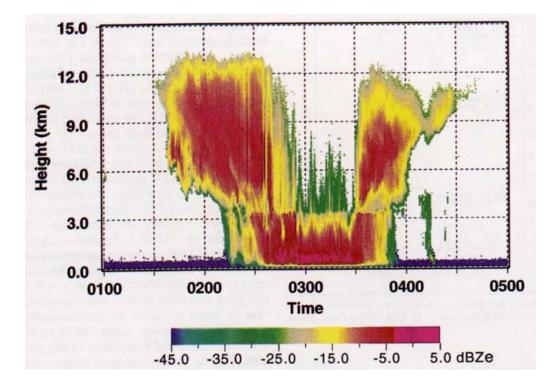


A bit of jargon; RADAR reflectiviy

 $P_r(r) = CZr^{-2}$

Z [mm⁶ m⁻³] is the Reflectivity Factor, often expressed logaritmically

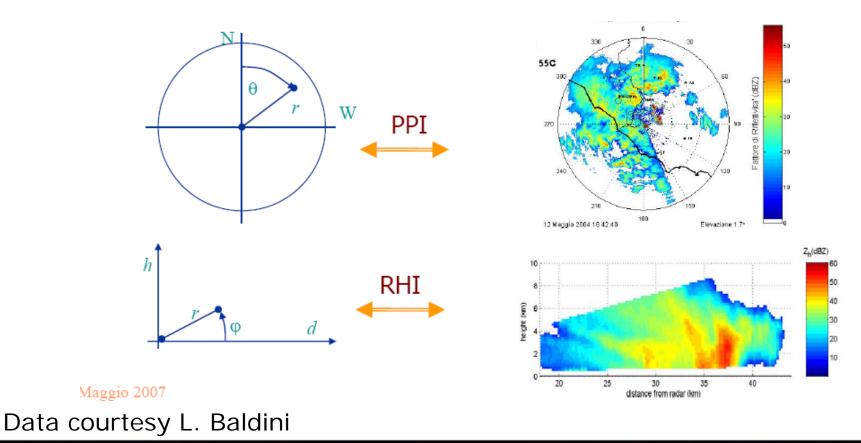
 $Z(dBZ) = 10 \log_{10}(Z)$



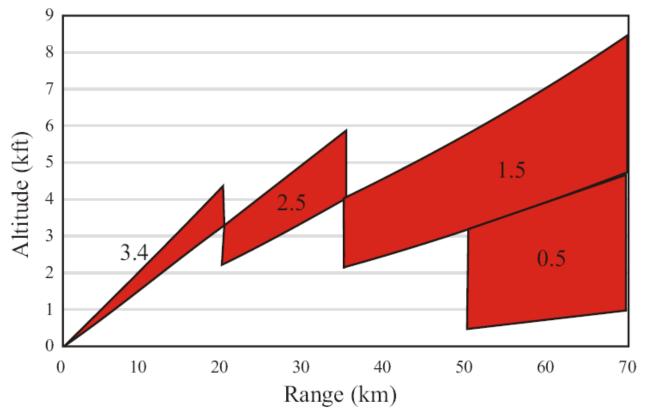
Clothiaux et al., 1995

visualization

Slant paths (Plan PositionIndicator, given elevation, all azimuth),
Vertical curtains, (RangeHeightIindicator, elevation scan, fixed azimuth



Vertical cross sections (Constant Altitude Plan Position Indicator)



Radar Receiver

From the antenna, the e.m. signal passes to a mixer and preamplifier, that

- Transform the high carrier frequency ω_c to al lower one ω_i
- Produce a signal voltage proportional to the scattered field

From a single scatterer:

net

$$V(t) = V \cdot e^{i(2k_c r - (\omega_i + \omega_{d,m})t + \phi_{s,m} + \phi_t)} \omega_{d,m} = 2\pi v_m / \lambda_c$$

- Incoherent detection
- Coherent (Doppler) detection:
 - allow the determination of the phase of the received signal;
 - From phase variation it is possible to infer the radial velocity

Doppler Radar

In two I and Q demodulators, to get rid of the frequency ω_i , the signal is multiplied by two reference voltages, a quarter out of phase, originated by a sample of the transmitted signal, then low pass filtered to obtain:

et

$$I(t) = V\cos(2k_c r - \omega_{d,m}t + \phi_{s,m}) = V(\tau_i, T_s)\cos(\theta(\tau_i, T_s))$$
$$Q(t) = V\sin(2k_c r - \omega_{d,m}t + \phi_{s,m}) = V(\tau_i, T_s)\sin(\theta(\tau_i, T_s))$$

The I and Q voltage amplitudes are a representation of the scattered e.m. field. Their Variability enable to produce power spectra. The istantaneous power at the antenna is proportional to :

$$P(t) = C(I^2(t) + Q^2(t))$$

from one to many scatterers (1)

e.m. field from one scatterer:

$$E(t) = A_m \cdot e^{i[2k_c r_m - (\omega_c + \omega_{d,m})t + \phi_{s,m} + \phi_t)}$$

e.m. field from many:

$$E(t) = \sum_{m} A_{m} \cdot e^{i[2k_{c}r_{m} - (\omega_{c} + \omega_{d,m})t + \phi_{s,m} + \phi_{t})}$$

Power received:

$$P(t) = \frac{1}{2R_0} E(t) \cdot E^*(t) = \frac{1}{2R_0} \left(\sum_{m=1,N} A^2_m + \sum_{\substack{m \neq n \\ m,n=1,N}} A_m A_n \cdot e^{i[2k_c(r_m - r_n) - (\omega_{d,m} - \omega_{d,n})t + (\phi_{s,m} - \phi_{s,n})]} \right)$$
$$P = \lim_{T_{M \to \infty}} \frac{1}{M} \sum_{j=1,M} P_j = \frac{1}{2R_0} \sum_m A_m^2$$

The first term contains the information on the total cross section. The second term disappear over long averaging over many pulses.

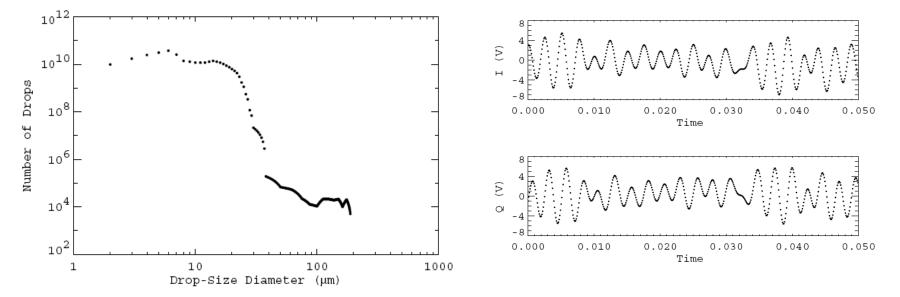
EUF Airborne Research

From one to many scatterers (2)

$$I(t) = \sum_{m=1,N} V_m \cos(2k_c r_m - \omega_{d,m}t + \phi_{s,m})$$

At the demodulators output:

$$Q(t) = \sum_{m=1,N} V_m \sin(2k_c r_m - \omega_{d,m} t + \phi_{s,m})$$



Simulation with a fall speed depending on the diameter Clotiaux et al., 2001

Some statistical properties (1)

The remainder of $2k_c r_m MOD2\pi$ is uniformly distributed over 0 2π

Cosines and sines are random variables undiformly distributed between -1 and 1

(C. L. Th.) Their sum tends to be gaussian distributed around 0

$$p[I(t)] = \frac{e^{-I^{2}(t)/2\sigma^{2}}}{\sqrt{2\pi\sigma}}; p[Q(t)] = \frac{e^{-Q^{2}(t)/2\sigma^{2}}}{\sqrt{2\pi\sigma}}$$

Some statistical properties (2)

I(t) and I(t-L) show a degree of correlation if L is not too large

I(t) and Q(t) are not correlated

I(t) and Q(t+L) show a degree of correlation if L is not too large

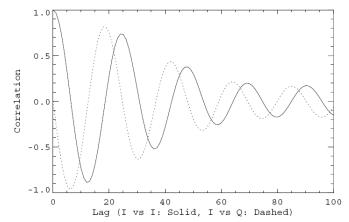


Figure 14. Correlation of I with itself (solid line) and with Q (dashed line) for lag times from 0 to 30 T_s , where $T_s = 0.0001$ is the simulated pulse repetition period for the forward simulation.

Clotiaux et al., 2001

The instrument noise is gaussian distributed, but is uncorrelated

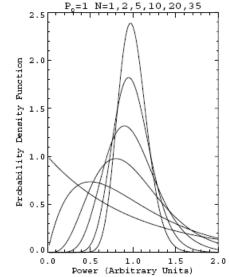
EUF European Facility For Airborne Research Some statistical properties (3)

$$p[I(t) \cap Q(t)] = p[I(t)] \cdot p[Q(t)] = \frac{e^{-(I^2(t) + Q^2(t)/2\sigma^2)}}{2\pi\sigma^2} = p[P(t)]$$

The power probability density is exponential with peak
probability 0 and mean value $2\sigma^2$ And for N averages of power samples: Λ

$$p[P_N] = \frac{N^N P_N^{N-1} e^{-N P_N / P_0}}{P_0^N (N-1)}$$

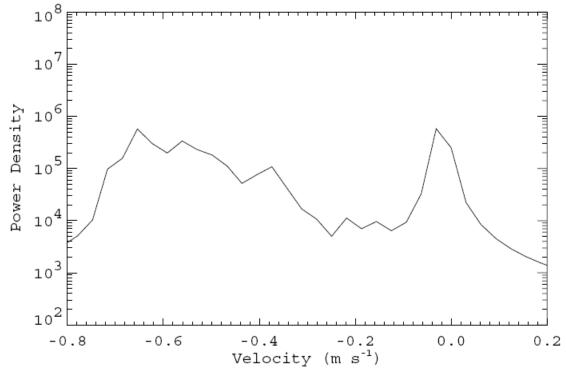
and



From P_N(r) we retrieve informations about η(r), hence the quantity and location of cloud particles.

Doppler moments (1)

Use I(t) and Q (t) as the real and complex array input for a FFT brings the power density spectrum $S(\omega m)=S(4\pi v m/\lambda c)$



 τ fixes the max and min retrievable velocity. T fixes the min velocity increment

Doppler moments (2)

Mean power weighted radiant speed

Spectral width

$$\bar{v} = \sum_{-N_n/2}^{-N_n/2} v(m) \cdot S_{norm}(m)$$
$$\sigma_v^2 = \sum_{-N_n/2}^{N_n/2} \left| \bar{v} - v(m) \right|^2 \cdot S_{norm}(m)$$

These quantities, together with the received power (zero moment) are the radar observables delivered by a Doppler system.

Pulse Pair correlation

Pulse Pair autocovariance technique:

et

European Facility For Airborne Research

$$V(m) = I(m) + iQ(m) \quad m = 1,..., N$$

$$R = \frac{1}{N-1} \sum_{m=1,N} V^{*}(m)V(m+1)$$

$$R_{re} = \frac{1}{N-1} \sum_{m=1,N} [I(m)I(m+1) + Q(m)Q(m+1)]$$

$$R_{im} = \frac{1}{N-1} \sum_{m=1,N} [I(m)Q(m+1) - Q(m)I(m+1)]$$

$$|R| = \sqrt{R_{re}^{2} + R_{im}^{2}}$$

$$\phi = \arctan(\frac{R_{im}}{R_{re}})$$

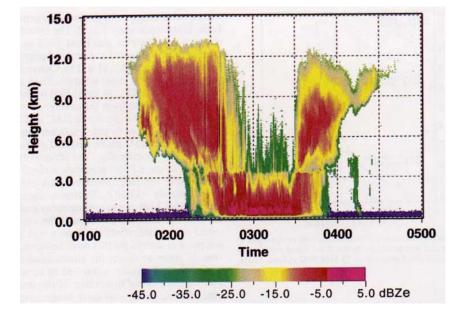
Mean backscatter-weighted radial velocity:

$$v = -\left(\frac{\lambda}{4\pi T}\right) \cdot \phi$$

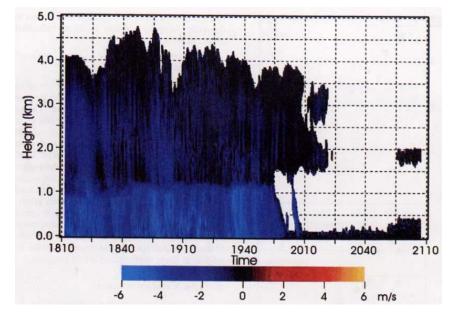
Spectral width:

$$\sigma_{v} = \left(\frac{\lambda}{2\pi T\sqrt{2}}\right) \cdot \left|\ln\left(\frac{S}{|R|}\right)\right|^{\frac{1}{2}}$$
$$S = \frac{1}{N} \sum_{m=1,N} |V(m)|^{2} (-noise)$$

Reflectivities and vertical speeds



et



Clothiaux et al, 1995

...what we have skippd

- Z- Precipitation Intensity; Cloud Liquid/Ice water content
- The effect of attenuation, negligible in S band, not so at shorter wavelenghts
- Georeferetiability (variability of refractive index with height)
- Polarimetric measurements
- Sources of errors; minimum detectable signal
- Calibration issues
- Etc, etc...

net

To learn more

Bringi,V.N. and V.Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

Doviak D.S. and Zrnic'D., *Doppler radar and weather observations*. **Second edition**, **Academic Press**, **1993**.

Clothiaux et al., Ground Based Remote Sensing of Cloud Properties using Millimeter Wave Radar, Edited by Raschke,E., Radiation and Water in Climate System, Nato ASI Series, Springer-Verlag,1996.