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What is turbulence?

turbulence —

1. Irregular fluctuations occurring in fluid motions. It is characteristic of
turbulence that the fluctuations occur in all three velocity components and are
unpredictable in detail; however, statistically distinct properties of the turbulence
can be identified and profitably analyzed. Turbulence exhibits a broad range of
spatial and temporal scales resulting in efficient mixing of fluid properties.

2. Random and continuously changing air motions that are superposed on the
mean motion of the air.

Glossary of Meteorology, American Meteorological Society

turbulence — In fluid mechanics, a flow condition (see turbulent flow) in which
local speed and pressure change unpredictably as an average flow is
maintained.

atmospheric turbulence — small-scale, irregular air motions characterized by
winds that vary in speed and direction. Turbulence is important because it mixes
and churns the atmosphere and causes water vapour, smoke, and other
substances, as well as energy, to become distributed both vertically and
horizontally.
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The turbulence probe on the FAAM aircraft consists of a five-port pressure measurement
system in the aircraft radome, combined with two scientific static ports - S10 -
symetrically placed on either side of the aircraft. The system also utilises measurements
from the RVSM-compliant air data computer and science measurements of the ambient
air temperature, corrected for kinetic effects.

Outputs from the Turbulence system are the angles of attack and sideslip and a
measurement of true airspeed. These data are used in conjunction with other core
measurements of aircraft attitude and aircraft velocity components to derive northwards,
eastwards and downwards components of wind velocity.

http://www.faam.ac.uk/index.php/science-instruments/turbulence/117-turbulence-probe



Rosemount temperature and General Flux instrumentation next to radome

Eastern dew point sensors on right (Rosemount temperature, Lyman-alpha
fuselage aft of radome hygrometers)

Turbulence probe holes around radome

http://www.eol.ucar.edu/instrumentation/aircraft



The picture shows
NOAA Long-EZ airplane
on which the physical
probe was primarily
developed. Tim
Crawford, whose vision
brought the BAT probe
into being, died of a
massive stroke in
September 2002. Since
he was flying the Long-
EZ at the time, we lost
both him and the
airplane. Nevertheless, a
hallmark of his
leadership was to
develop the talents of
those he was leading.
He has left behind a
group of capable people
and a mature system.

http://www.atdd.noaa.gov/?g=node/29



DLR Cessna 208B with turbulence probe
http://www.dIr.de/en/desktopdefault.aspx/tabid-4689/7762_read-11996/
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Fig. 2. The relationship between the Earth and aircraft coordinates. Earth coordinates are North, East and vertical, or xyz. Aircraft
coordinates are longitudinal axis, lateral axis and vertical axis, or x"y'z". ¥ = heading in xyz: # = pitch in xyz: ¢ =roll in xyz; o = angle of
attack in x'y'z"; B = sideslip angle in x"y'z’.
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Fig. 3. Schematic of the Javad AT4 differential GPS and AIMMS modules. The figure shows the optional second CPM unit which allows
on-line data to be displayed whilst the first CPM records high frequency data.




Table 2. AIMMS specifications.

Module

Specification

All modules

ADP

IMU

GPS

CPM

power: 12.5-37VDC, 800-900mA at 125V
digital serial communication via 115 kbaud controller area network

Measurement frequency up to 20 Hz
Overall weight 3.36kg

Operating range —=20°C to +50°C

Static pressure range 0-110kPa, accuracy 0.1 kPax0.05%
Pitot pressure range 0-14 kPa, accuracy 0.02 kPax0.05%
Wind speed horizontal: accuracy 0.5 ms ™!

vertical: accuracy 0.75 ms ™!
Temperature glass encapsulated bead thermistor
calibrated accuracy 0.05°C (0.3°C with dynamic heating correction)
resolution (0.01°C, ime constant <=5 s
mounted in ventilated reverse-flow chamber
Relative Humidity  thermoset polymer capacitative
accuracy £2% RH (0-100%)
resolution 00.1%, time constant =35 s at 20°C
mounted in ventilated reverse-flow chamber
Compass heading  3-axis magnetic field sensors
Communication external RS232 at 115 kbaud

Overall weight 0.74 kg

Accelerometer 3-axis, range 35 g, accuracy 0.005 g, operated at 40 Hz
Rate gyro 3-axis, operated at 40 Hz

Overall weight 0.80kg

Heading accuracy 0.1°

Position accuracy 0.01 m

Antennae shares two dual frequency antennae with AT4 DGPS
Overall weight 0.60kg

Processor Motorola DSP5S6F807 processor

16 Mbit flash memory
external RS232 at 115k baud
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Fig. 4. Schematic diagram of the two airborne calibration procedures for the AIMMS sensor: (a) shows the flight plan for the aerodynamic
calibration, whilst (b) shows the flight plan for the cross-axis calibration.
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After WIKIPEDIA:

Temperature is a physical property that underlies the common notions of
hot and cold. Something that feels hotter generally has a higher
temperature, though temperature is not a direct measurement of heat.

Historically, two equivalent scientific concepts of temperature have
developed: the macroscopic thermodynamic description, and a
microscopic explanation based on statistical physics.

The thermodynamic definition of temperature, first stated by Lord Kelvin, is
based entirely on empirical variables, as could be measured with a
thermometer. Statistical physics provides a deeper understanding by
describing the atomic behavior of matter, and derives macroscopic
properties from statistical averages of microscopic properties.

Think to remember:

thermometer always measures its own temperature. To measure
temperature of air one has to put the thermometer on the aircraft and this
creates a lot of problems.


http://en.wikipedia.org/wiki/Physical_property
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Cold
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The recovery temperature of an immersion ther-
mometer, T,, 1s the effective (1.e., average) temperature
at the surface of the sensor when there 1s no net heat
transfer to the airstream. The recovery temperature is
affected by the thermometer housing ( which slows and
hence heats the air) and by the sensing element ( which
is heated by friction and by additional deceleration of
the airflow in its vicinity). If the air in the housing 1s
slowed adiabatically to a fraction f of the free-stream
airspeed U, conservation of energy requires that the
air temperature will change from the free-stream tem-
perature T, according to

Ul
2C,

where T, 1s the temperature of the decelerated air in
the housing, U/_, is now the true airspeed of the aircraft,
C is the specific heat of air at constant pressure and
= 1 — % is the “recovery factor” of the housing.
Then ry=(T,— T,)/(T,— T,), where T,1s the stag-
nation temperature at U, (sometimes called the “‘total
temperature™ ). If the sensing element is characterized
by a recovery factor r, applicable at the slowed airspeed
fU,,, the temperature of the sensing element will be

Tﬁ-_T +J"h '[l}
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where r = 1 — f2(1 — r,)is the effective recovery factor
of the thermometer. This dependence of the recovery
factor on f and r, assumes that frictional heating of
the air by the housing is negligible.

While (2) defines the recovery temperature under
adiabatic conditions at the surface of the sensor, in
practice these conditions are rarely met in airborne
thermometry. For a platinum resistance thermometer,
additional errors result from conduction of heat from
the housing to the sensor, self-heating (caused by the
current used to measure the resistance ), heating of the
air by the housing, and radiative heat transfer. Resulting

At an aircraft speed of 100 m s~', compressional
and viscous heating will warm the air approaching an
immersion thermometer by about 5°C (if r, = 1).

Because this compressional heating occurs in a few
milliseconds, while the time constant for response of
the cloud vapor field to changes in ambient conditions
is typically a few seconds (e.g., Politovich and Cooper

Tr=Th+rJ
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Error due to wetting:

One can insert (5) into (3) and use the Bedingfield
and Drew ( 1950) relationship for the ratio of heat-to-
mass transfer coefficients (as did Lenschow and Pennell
1974) to obtain

Top— T, ! (ES(TWI:-) - ﬂ Em) {6}

whefe
A = —>(Sc/Pr) ( l P, ) (7)

is the psychrometric parameter, Sc is the Schmidt
number and Pr i1s the Prandtl number. The quantity-
(Twr — T,) is the error caused by sensor wetting, and
its absolute value is equal to the wet-bulb depression.

Equation (6) is similar to the classical wet-bulb
equation,

_

A'P,
where the prime denotes quantities at low-velocity. In
(6), T, replaces T, of (8) and the free-stream vapor
pressure has been multiplied by the factor P,/ P.,, as

15 appropriate in a compressed airstream near the sens-
ing element.

?ﬂwb _ Ta:- (EE[T:NI:I} — Em} (8}
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FIG. 9. Time series of measurements recorded during penetration by the NCAR King Air of an undiluted -
core in a warm cumulus cloud near New Iberia on 7 November 1985, The plotted adiabatic temperature ™
and liquid water content were computed using measurements taken at cloud base by the NCAR Electra. 2
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The theoretical value of temperature for a wetted sensor was computed using (6) for the reverse-flow ther- O a0 80 120 =18} 200

mometer { RFT}, and is compared with the observed temperature difference between the RFT and the Ophir

radiometric thermometer. (AT = RFT — ORT.)
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FiG. 1. Temperature error { 7., — 7T,) for 2 wetted sensor with r
= 1 as a function of true airspeed at —15 and +15°C, using {25)
from Lenschow and Pennell ( 1974) and (6 ) from the present work.
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FIG. 3. Principal components of two immersion thermometers used in this study, the Rosemount
total temperature probe (left) and the NCAR reverse-flow probe (right). Air enters through port
{A)and is exhausted through ports ( B) after coming in thermal contact with platinum wire sensor
{C). The probes are designed to separate cloud hydrometeors (D) from the airstream reaching
the sensing element.



TABLE 1. Basic cloud properties and cloud exit EC parameters for all cumuli used in this study, in three campaigns. Cumulus depths
were estimated from the zenith antenna of the WCR and the lifting condensation level. The quality of fit is discussed in the text.

HiCu-03 RICO-04 CuPIDO-06
Environment Continental Maritime Continental
Number of clean cloud exit samples (7 = —12.3°C) 77 153 T6
Number of clean cloud entrance samples (T = —12.3°C) 291 188 162
Mean in-cloud temperature before EC correction (°C) —0.0 +15.5 +0.6
Approx range of cumulus depths (km) 1.0-3.8 0.8-2.7 0.7-10
Mean cloud droplet number concentration (em™ 446 56 216
Mean droplet diameter (um) B.6 19.2 16.3
Mean cloud liquid water content (g m ) 0.35 .43 .83
Quality of cloud exit EC bias fit (K) 0.088 (0.094 0.101
Mean cloud exit EC amplitude AT, (K) =0.77 -1.07 =1.75
Mean cloud exit EC time constant 7, (s) 2.20 233 1.88
Standard error of the regression estimate of A7, (K) 0.70 0.76 (.80

(b) =77

S——
=i,
‘h.

(a)
B
Wang and Gerets, ‘ o 5 (cm)

2009 scale

Fi1G. 2. Photo and schematic of the reverse-flow thermometer. Air enters through port (A)
and exits through any of several ports (B). Inside the housing, the air flows past a platinum
wire sensor (C) wound in a spiral, 25 pm in diameter. The reverse-flow design is intended to
separate hydrometeors (D) from the airstream that enters the probe. The schematic on the
right is from LC90.
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Wang and Gerets, 2009 >>...there is strong evidence that some wetting does occur and therefore
also sensor evaporative cooling as the aircraft exits a cloud.... This cloud exit “cold spike” can be
found in all cumulus clouds, even at subfreezing temperatures, both in continental and maritime
cumuli.....Evaporation from the wetted sensor in cloud is surmised because air decelerates into the
thermometer housing, and thus is heated and becomes subsaturated. <<
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Fig. 2. Photograph of the AUSAT mounted under the fuselage of
the Merlin IV after 1997,
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Fig. 1. Typical flight pattern in Belchatow experiment.

Measurements in cooling
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A New Ultrafast Thermometer for Airborne Measurements in Clouds
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Fig. 1. Schematic view of the UFT sensor: (1) sensing element
(tungsten wire, diameter 2.5 pm, length 3 mm); (2) Teflon-insulated
copper supports: (3) stainless-steel tubes; (4) protecting rod made of
stainless steel: (5) holes for water removal from the rod; (6) Venturi
nozele for water removal; (7) protective nylon thread; (8) copper
connectors; (9) shaft; (100 ball-point bearing; (11) shaft stops; (12)
Vine.

Fig. 7. UFT sensor mounted on the nose boom of the SZ2D-45 OGAR motorglider. The 5-mm
length of the sensing wire may serve as a scale,
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FIG. 1. (a) Schematic view of the UFT-F
sensor:
(1) sensing element (platinum-coated
tungsten wire, g 2.5, length 5 mm);
(2) Teflon-insulated copper supports;
(3) stainless-steel tubes;
(4) airfoil-shaped protecting anti-droplet rod
made of stainless steel;
(4a) additional protection in form of 0.25-mm
nylon string (in newer versions of the
instrument);
(5) slots for suppressing wake eddies and
water removal from the rod;
(6) Venturi nozzle for creating suction;
(7) elastic tube connecting the sensor frame
with the Venturi nozzle pneumatic ducts
in gray;
(8) sensor frame;
(9) insulated copper connectors;
(10) shaft;
(11) ball-point bearing;
(11a) sleeve bearing;
(12) shaft bumpers;
(13) vane,
(14) supporting fork.

(b) ( Cross section of an antidroplet
protective rod of UFT-F [part (4) in (a)]
compared with (left) that of UFT-S.
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2.5 um. The dot on the right represents position of the tungsten wire sensor.
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Fig. 4. Fragment ol a temperature record taken with two UFT-F sensors in flight through Cu
med cloud at an airspeed of 70 m s~'. A drop of temperature lasting about 5 ms recorded with
UFT-F1 might result from a wet-bulb effect on the sensing wire wetted while passing the cloud.
Distance on the horizontal scale is measured from the beginning of recording,
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research aircraft showing the location of the UFT and
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surround the 5-hole gust probe on the aircraft nose.
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Fig.5. Examples of recorded femperature fluctuations in the cloud-top region. Upper panel shows full
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Fig.7 Histograms of correlations <LWC' T*> on horizontal legs inside cloud deck in flights TO13 (left panel) and
TO10 (right panel). It can be seen that weak positive correlations prevail. Strong negative correlations occur
frequently in some legs of TO13 only.
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