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Hyperspectral imaging of toxin-producing cyanobacterial 
blooms in eutrophic lakes 

 
Background 
Cyanobacteria and human health 
Cyanobacteria (blue-green algae) are natural and cosmopolitan inhabitants of fresh, 
brackish and marine waters (see Fig. 1).  They are particularly well adapted for 
growth in nutrient-enriched lakes and other slow-flowing inland waters and often form 
mass populations (as blooms, scums or biofilms) during summer and autumn at 
temperate latitudes.  These mass populations are a serious concern because they 
can have profound and far-reaching adverse environmental and economic impacts 
on natural and controlled waterbodies.  They can also pose significant risks to animal 
and human health because several species can produce potent toxins (cyanotoxins).  
These toxins constitute some of the most hazardous of all waterborne biological 
substances and include agents with neurotoxic (anatoxin-a, beta-methylamino 
alanine, saxitoxins); hepatotoxic and tumour-promoting (microcystins, nodularins); 
cytotoxic (cylindrospermopsins) and endotoxic (lipopolysaccharides) properties 
(Codd et al. 2005). 
 

 
 

Figure 1 Micrograph image of the blue-green toxin-producing 
cyanobacterium Anabaena circinalis. 

 
Blooms of toxigenic cyanobacteria in waterbodies used for drinking water, 
aquaculture, crop irrigation and recreation are increasing in abundance and spread 
due to eutrophication.  Human exposure to bloom-forming cyanobacteria and their 
toxins most commonly occurs via drinking water or incidental ingestion, dermal 
contact and inhalation (Codd et al. 2005).  Cyanotoxins have been linked with 
numerous incidences of ill health in humans ranging from cases of mild skin irritation 
and gastrointestinal illnesses to acute (and occasionally fatal) poisonings.  These 
risks may be further exacerbated if incidences of blooms continue to increase under 
a warming climate.   
 
The abundance of cyanobacteria is a useful measure of inland and coastal water 
quality and is one of the biological quality metrics being considered for the 
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assessment of lake ecological status under the European Union’s Water Framework 
Directive (EU WFD) (2000/60/EC).  Monitoring of cyanobacteria and their toxins is 
also necessary so that timely warnings can be provided to safeguard animal and 
human health.  However, monitoring cyanobacterial blooms from a regulatory 
perspective can be problematic.  Cyanobacterial blooms are often very patchily 
distributed in space and time which makes it difficult to get an accurate 
representation of their abundance through ship-based sampling alone.  Moreover, 
ship-based sampling approaches are not conducive to regional- or global-scale 
monitoring.  There is thus a clear need for improved monitoring and management of 
cyanobacteria and their toxins in inland, transitional and coastal waters for the 
protection of animal and human health. 
 
Remote sensing of cyanobacterial blooms 
There is considerable interest in the development of remote sensing-based 
techniques for the detection and mapping of cyanobacterial blooms from space. It 
has been shown that the concentration of chlorophyll a (Chl-a) within phytoplankton 
blooms can be retrieved from hyperspectral reflectance spectra using a simple two-
band ratio: 
 

    

€ 

Chl a ∝  
Rrs(710)
Rrs(665)      [1] 

 
where Rrs(710) and Rrs(665) is remote sensing-reflectance at wavelengths 710 and 
665 nm respectively.  This band ratio exploits the local Chl-a absorption maximum 
near 670 nm.  In this region of the spectrum, interference from other optically active 
substances such as mineral particles and coloured dissolved organic matter (CDOM) 
is minimal.  The depth of the absorption feature near to 670 nm is thus directly 
related to the concentration of Chl-a.  Conversely, Chl-a absorption is minimal at 
near to 710 nm.  Therefore, this band is used for normalisation and to minimise 
effects caused by non-algal backscattering and atmospheric path radiance effects.  
We therefore expect the value of [Rrs(710):Rrs(665)] to increase as the concentration 
of Chl-a increases.   
 
We can develop an algorithm for estimating Chl-a from this two-band 
[R(710):R(665)] ratio by regressing the value of the ratio against measured 
concentrations of Chl-a (see Fig. 2) in water samples collected from known stations 
concurrent to airborne remote sensing flights or satellite overpasses.  This approach 
has been used to produce Eq. 2 for the retrieval of Chl-a using the [R(710):R(665)] 
band ratio.  It was developed using data collected in the Norfolk Broads, UK. 
 

    

€ 

Chl a (mg m-3) =  - 26.2 +  40.3 ×
R(710)
R(665)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    [2] 

 
Remote sensing algorithms of the type shown in Eq. 2 have been widely used to 
retrieve estimates of Chl-a in inland waterbodies from remotely sensed data and 
provide a useful estimate of total phytoplankton biomass within the water column.  
However, because nearly all phytoplankton contain Chl-a, it does not provide any 
information on phytoplankton taxa present.  This is a major limitation if we are 



EUFAR ADDRESSS, 19-28 August 2010 | Balaton Limnological Research Institute 
	
  

Page | 3  
	
  

interested in determining the abundance of cyanobacteria within mixed 
phytoplankton assemblages.   
 
However, there is a small but growing body of evidence to suggest that the 
identification and quantification of cyanobacteria from reflectance spectra is possible 
because of their unique bio-optical traits (Hunter et al., 2008).  Freshwater 
cyanobacteria contain the accessory photopigment phycocyanin.  In contrast to Chl-
a, phycocyanin (C-PC) has a local absorption maximum near 620 nm.  This 
diagnostic spectral trait provides a route to the detection and quantification of 
cyanobacteria in inland waters.  Recently, a number of studies have sought to 
develop algorithms for the retrieval of C-PC from remotely sensed data (Hunter et al. 
2008a, 2008b, 2009; Tyler et al. 2009) so that we can move towards global 
monitoring of cyanobacterial blooms from space. 
 

 
 

Figure 2 The relationship between the [R(710):R(665)] band ratio and the 
measured concentration of Chl-a in the Norfolk Broads 

 
 
Study site 
Esthwaite Water is a small eutrophic lake in the English Lake District (54°21ʹ′N, 
3°0ʹ′W).  It has a mean depth of 6.4 m and a maximum depth of around 25 m.  The 
lake thermally stratifies in late-April, with the water column turning over again in the 
autumn.  The lake receives nutrient inputs from a local sewage treatment works and 
a fish farm and these fertile conditions promote the growth of toxigenic cyanobacteria 
during the summer and autumn, including species such as Anabaena, 
Aphanizomenon, Microcystis, Planktothrix and Woronichinia.  In April 2007, a bloom 
of Anabaena circinalis occurred in the lake; this was one of the earliest 
cyanobacterial blooms in Esthwaite Water on record and suggest the lake is 
responding to climatic forcing. 
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Aim 
The aim of this project is to evaluate the efficacy of hyperspectral imaging as a 
tool for monitoring and managing toxic cyanobacterial blooms in lakes through 
an analysis of data collected at Esthwaite Water in 2007 during the spring bloom of 
Anabaena circinalis.  This is to be achieved through the following objectives: 
 

1. Determine the accuracy of the existing Chl-a retrieval algorithm (Eq. 2) 
using the AISA Eagle-Hawk data from Esthwaite Water. 
 

2. Design a band-ratio algorithm for the retrieval of C-PC and use 
regression analysis to develop an algorithm that can be applied to the 
AISA Eagle-Hawk image for the discriminative mapping of cyanobacteria 
in Esthwaite Water. 
 

3. Compare the performance of the empirical algorithm for Chl-a retrieval 
against a semi-analytical model (if time permits). 

 
Datasets 
The available datasets include hyperspectral AISA (Airborne Imaging Spectrometer 
for Applications) Eagle and Hawk images of Esthwaite Water in the English Lake 
District acquired by the Natural Environment Research Council’s Airborne Research 
and Survey Facility (NERC ARSF).  The Eagle and Hawk data have been appended 
together into a single file named AISA_EH_Est_26042007.img.  This hyperspectral 
image is composed of 335 contiguous bands between 394 and 2451 nm and has a 
spatial (pixel) resolution of 5 m.   The image was acquired between 11:51 and 11:57 
h UTC on 22 April 2007 under clear skies and minimal atmospheric haze.   
 
Water samples were collected at the same time as airborne overflights and the 
locations of the sampling stations were recorded using a GPS (± 5 m).  The water 
samples were analysed for the concentrations of Chl-a and C-PC.  The water quality 
data is provided in the spreadsheet named Water Quality Data.xls. 
 
Remember to set your user preferences at the start of each session 

and save all your files to your home folder as you progress  
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Task 1: Preliminary image processing 
The AISA Eagle-Hawk image has been georegistered to UTM WGS-84 coordinates.  
The data has also been atmospherically corrected to remote sensing-reflectance 
[Rrs(0+,λ)] using the FLAASH model in ENVI.  Rrs(0+,λ) is the reflectance signal as 
measured immediately above the water column without the contribution of sky 
radiance or specular reflectance from the water surface itself.  The AISA Eagle-Hawk 
data is therefore directly compatible with the reflectance-based Chl-a retrieval 
algorithm presented in Eq. 2.  

 Create a region-of-interest (ROI) around the shore of Esthwaite Water (you 
can also include the two smaller waterbodies if you wish) and use this to build 
and apply a Mask Band to the AISA Eagle-Hawk image to remove all non-
water pixels from the scene (or alternatively spatially subset the image).  This 
will prevent you applying the retrieval algorithms to terrestrial pixels. 

 
 
Task 2: Test the existing Chl-a retrieval algorithm 
The Chl-a retrieval algorithm presented in Eq. 2 was developed from data collected 
in the Norfolk Broads.  However, to rigorously test the performance of this algorithm 
it is important that we apply it to datasets collected from different lakes with differing 
optical properties.  The optical properties of Esthwaite Water are likely to be 
markedly different from those of the Norfolk Broads. 

 Use either the band math or band ratio tool to calculate the value of 
[R(709):R(665)] band ratio for the subset image of Esthwaite Water created in 
Task 1. 

 Use the band math function to apply the Chl-a retrieval algorithm to the 
[R(709):R(665)] band ratio image.  This will create a further image depicting 
the estimated Chl-a concentration on a pixel-by-pixel basis across the lake. 

 The locations of the sampling stations on Esthwaite Water are provided in 
Water Quality Data.xls.  Use the pixel locater and cursor location/value (or 
another appropriate method) to determine the estimated Chl-a concentrations 
at each sampling station. 

 Compare the estimated Chl-a concentrations from the AISA Eagle-Hawk 
image to those measured in the lake.  Create a scatter plot of Estimated Chl-a 
vs. Measured Chl-a in MS Excel (or similar) and calculate the coefficient of 
determination (R2) and the RMSE (mg m-3, %) for the retrieval. 

Q How well did the Chl-a retrieval algorithm perform?  Did it perform better or 
worse than in Esthwaite Water compared to the Norfolk Broads?  Do your 
results suggest this algorithm could be used routinely to estimate Chl-a in 
Esthwaite Water and other eutrophic lakes with acceptable error terms (e.g., ± 
20%)?  

 
 



EUFAR ADDRESSS, 19-28 August 2010 | Balaton Limnological Research Institute 
	
  

Page | 6  
	
  

Task 2: Develop a new algorithm for C-PC retrieval 
You have now applied a Chl-a retrieval algorithm to the AISA Eagle-Hawk data and 
used this to produce spatially synoptic estimates of the Chl-a concentration across 
the lake.  However, we cannot infer cyanobacterial abundance directly from the 
retrieved Chl-a concentration.  To do this, we need an algorithm that specifically 
estimates the concentration of a diagnostic biomarker pigment such as C-PC. 

 Devise a simple band ratio model for the retrieval of C-PC, carefully selecting 
the bands to be used in the model to optimise retrieval.  [Hint: all the 
information you need is contained in this handout!]. 

 Use the band math or band ratio function to calculate your new band ratio for 
C-PC retrieval from the original AISA Eagle-Hawk image.   

 Use the pixel locater and cursor location/value (or another appropriate 
method) tools to extract the band ratio values at each sampling station. 

 Use regression analysis in MS Excel to determine the relationship between 
the band ratio value and the measured C-PC concentrations for the 10 
sampling stations on Esthwaite Water.  [Make sure that you use C-PC as the 
independent (response) variable]. 

 Use a band math function to apply the resulting regression equation to the 
AISA Eagle-Hawk image and retrieve estimates of C-PC on a pixel-by-pixel 
basis across the lake. 

 Produce a calibrated map depicting the concentration of C-PC in Esthwaite 
Water either in ENVI or by exporting the processed image to a package such 
as ArcGIS.  Include a scale bar (in kilometres), north arrow and legend on 
your output map. 

Q How well did the retrieval algorithm for C-PC perform?  What was the 
coefficient of determination and RMSE for the retrieval? Do your results 
suggest this algorithm could be used routinely to estimate cyanobacterial 
abundance in eutrophic lakes with acceptable error terms (e.g., ± 20%)? 

 

Time to spare?  Optional task: Testing semi-analytical algorithms 
 
You have now developed and applied empirical algorithms for Chl-a and C-PC 
retrieval.  While empirical algorithms are attractive in the sense that they are 
relatively easily to derive, they tend to have limited transferability between different 
lakes types and conditions.  Analytically-based algorithms that adopt a more tangible 
physics-based approach tend to be far more robust when applied across different 
waterbodies.  Several analytically-based algorithms have been proposed for the 
retrieval of Chl-a, and recently a semi-analytical algorithm has been proposed for the 
estimation of C-PC in Case II waters. 

Gons et al. (2005) proposed the following algorithm for the retrieval of Chl-a from 
MERIS data.   
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achl(665) = aw (708.75) + bb[ ] ×
Rrs(708.75)
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   [3] 

 

where achl(665) is the absorption coefficient of chlorophyll at 665 nm; aw(665) and 
aw(708.75) are the absorption coefficients of pure water at 665 (0.401) and 708.75 
nm (0.727) respectively; Rrs(708.75) and Rrs(665) is the measured remote-sensing-
reflectance at 708.75 and 665 nm respectively; p is an empirical constant equal to 
1.062.  The algorithm assumes a white (spectrally neutral) backscattering coefficient; 
this can be calculated using a wavelength located in the near-infrared as follows: 

 

    

€ 

bb =
1.61×Rrs(779)

0.082 −0.6×Rrs(779)
	
   	
   	
   	
   	
   [4]	
  

 

where Rrs(779) is the remote sensing-reflectance at 779 nm.  The true concentration 
of Chl-a can then be calculated by dividing the value of achl(665) by the specific 
chlorophyll absorption coefficient at 665 nm = 0.0161 m-1. 

If you have sufficient time implement the algorithm above algorithm using the AISA 
Eagle-Hawk data from Esthwaite Water and see how it compares with the locally-
optimised empirical algorithm.  See Hunter et al. (2010) for further information. 
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