**EUFAR - EUropean Facility for Airborne Research** 



net

# Hands-on practice: LIDAR data quality analysis and fine-georeferencing

Christian Briese cb@ipf.tuwien.ac.at <sup>1</sup> Institute of Photogrammetry and Remote Sensing Vienna University of Technology <sup>2</sup> Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology, Vienna

ADDRESSS training course, 19-28 August 2010, Balaton Limnological Research Institute , Hungary

# ALS data acquisition

- Configuration
  - Laser Scanner (LS)  $(v, \chi, r)$
  - Inertial Measurement Unit (IMU) (ω, φ, κ)
  - Global Positioning System (GPS)  $(X_0, Y_0, Z_0)$
- Synchronisation
  - **Time Stamp** (t)



GPS

Tacaacaa

بردرد دردرد





### What are the characteristics of ALS data?

#### Point density

→ ALS-points are scattered irregular on the ground; distribution depends on flying height, flight movements, etc.

#### Random errors

Are caused by measurement noise.

#### Systematic errors

Are caused by errors of the calibration of the sensors, and errors of the relative and absolute orientation of the strips.



# Systematic errors

- Two types:
  - Absolute: discrepancies at ground check features
  - Relative: discrepancies between adjacent, overlapping laserscanner strips
- → Errors of the ALS data directly influence the quality of the derived products (DTM)
- Reasons:
  - IMU misalignment
  - GPS initialization
  - Calibration error, ...
- Possible solution:
  - absolute / relative improvement of orientation using strip adjustment
    - $\rightarrow$  improved transformation parameters

(H. Kager, Discrepancies Between Overlapping Laser Scanning Strips – Simultaneous Fitting of Aerial Laser Scanner Strips, in: O. Altan (ed.), ISPRS Archives 35 (Part B1), Istanbul, Turkey, 2004, pp. 555-560.)





#### Strip differences documenting errors of relative orientation



## Examples

Improvement of transformation parameters using strip adjustment Strip difference of original data: Strip difference after strip adjustment:



# ALS quality documentation

- point density (per strip and for the aggregation of all strips)
- **measurement noise**  $\rightarrow$  accuracy of points (sigma-dtm)
- **relative orientation**  $\rightarrow$  strip differences

The following programs are used

- OPALS (Orientation and Processing of ALS Data) scientific processing software
- SCOP++
- SCOP.GVE





### OPALS, http://www.ipf.tuwien.ac.at/opals/





Main Page Related Pages

#### **OPALS - Orientation and Processing of Airborne Laser Scanning data**

OPALS stands for Orientation and Processing of Airborne Laser Scanning data. It is a modular program system consisting of small components (modules) grouped together thematically in terms of packages. The aim of OPALS is to provide a complete processing chain for processing airborne laser scanning data (waveform decomposition, georeferencing, quality control, structure line extraction, point cloud classification, DTM generation and several fields of application like forestry. hydrology/hydraulic engineering, city modelling and power lines).

The manual is divided into three parts, each of which is sub-divided into several sections.

#### User Documentation

- Section Installation discusses how to download and install OPALS
- Section Getting Started gives a 15 minute introduction on how to use OPALS
- Section Software Concept describes the basic concept of OPALS in detail
- Section Workflow Management shows how to combine OPALS modules using scripts
- Section Supported Formats overviews the supported vector and raster file formats
- Section FAQ answers frequently asked questions concerning OPALS
- Section Bibliography contains a list of OPALS related articles

#### **Reference** Documentation

- Section Module Reference contains a list of all OPALS modules and a detailed description of each module
- Section OPALS Datamanager describes the ALS data administration concept in detail
- > Section Parameters / Configuration Files / Parameter Mapping explains parameter categories and types, and how to specify respective values
- Section Logging / error handling contains details about the way OPALS logs information and handles errors
- > Section Filters explains the detailed syntax used to filter vector data
- Section OPALS Format Definition shows how to operate with generic user-defined vector formats
- Section Using Python Bindings describes how to embed OPALS modules in a Python programming/scripting environment
- Section Using C++ Bindings deals with embedding OPALS modules in a C++ programming environment
- > Section C++ API Reference contains the detailed OPALS module class documentation (public functions, parameters, etc.)
- Section Third Party Software lists all the external libraries and programs used within OPALS
- Section Glossary contains a list of a keywords and acronyms together with a description of their meaning

#### **OPALS** Packages

- Package opalsPreprocess:\*\* Signal analysis and point cloud derivation
- Package opalsQuality: Quality control and documentation
- Package opalsGeoref:\*\* ALS strip adjustment
- Package opalsGeomorph:\* Terrain feature extraction (breaklines lines,etc.)
- Package opalsClassify:\* 3D-Classification of ALS point cloud
- Package opalsSurface:\* Surface interpolation (DTM/DSM) and visualisation
- Package opalsHydro:\* Hydrologic/Hydraulic applications
- Package opalsForest:\*\* Forestry applications
- Package opalsCity:\* Building and city modelling



\*) package not yet available \*\*) package only available partially



ADDRESSS training course, 19-28 August 2010, Balaton Limnological Research Institute , Hungary

#### OPALS

Orientation and Processing of Airborne Laserscanning Data

SOCS ...... Scanner Own Coordinate System GLCS ...... Global Coordinate System PRCS ..... Project Coordinate System



# **OPALS** Processing

- Running OPALS modules: open a Command Prompt (e.g. Start  $\rightarrow$  Run  $\rightarrow$  cmd) or Start  $\rightarrow$  All programs  $\rightarrow$  Accessories  $\rightarrow$  Command Prompt
  - change to your project directory
  - start the program with the appropriate input parameters
  - e.g. C:\ opalsCell -i input.odm -cellSize 5 -feature pdens (one such call may cover several lines on the screen)
  - Several calls can be put in a so-called batch-file (.bat).

Help on OPALS: C:\Program Files\OPALS\doc\opalsManual.html













# opalsImport

Before any OPALS module can work with the ALS-data, that data needs to be imported and stored in a suitable format (ODM = OPALS Data Manager). This is done by **opalsImport** 

Example 1:

opalsImport -inFile G101ALL.bxyz

→ Imports the points on file G101ALL.bxyz and generates G101ALL.odm.dat and G101ALL.odm.idx. This file pair is later referenced by G101ALL.odm

Example 2:

opalsImport -inFile G101ALL.bxyz -inFile G102ALL.bxyz inFile G102ALL.bxyz -outFile ALL.ODM

→ Imports the points on the files G101ALL.bxyz, G102ALL.bxyz and G103ALL.bxyz and generates ALL.odm.dat and ALL.odm.idx. This file pair is later referenced by ALL.odm



# opalsCell

program to derive one representative z-value per raster cell from all original points inside the cell. The parameter –feature defines this representative value.



Note: The tif-files created by many OPALS modules contain float-values and not 8bit. Thus viewing these tif-files in e.g. IrfanView makes not much sense.



12

S

# opalsGrid

#### program to create a digital elevation model from a given point set by using either snap grid, nearest neighbour, moving average or moving planes interpolation.

Important parameters:

--inFile: Input file

--interpolation:

\* Moving planes: For each grid cell n nearest ALS points (-neighbours) are queried and a best fitting tilted plane (minimizing the vertical distances) is estimated. The height of the resulting plane at the grid point (x,y) position is mapped to the grid cell

--neighbours: Number of nearest neighbours used for grid point interpolation

--searchRadius: Maximum search radius for point selection (smax in figure right). Only points within smax are considered for the interpolation of a single grid post. If the search area contains too few points for successful interpolation, the respective grid post is marked as 'nodata'.

--feature:

- \* sigma: sigma z of grid post interpolation adjustment
- \* density: point density estimate (moving average/planes only)
- \* excentricity: distance between grid point center of gravity of data points (epsilon in figure right)

\* slope: steepest slope in %

\* exposition: slope aspect = azimuth of steepest slope line

--gridSize: grid width of output

--outFile: (optional)

e.g.

opalsGrid -inFile L:\TOM\_UE\part1\group1\G105ALL.ODM -gridSize 1 -feature sigma -feature excentricity -interpolation movingPlane **-searchRadius 2.1 -neighbours 9** 

 $\rightarrow$  Creates files <code>G105ALL.tif</code>, <code>G105ALL\_sigma.tif</code> and <code>G105ALL\_excen.tif</code>

Moving planes interpolation:







# opalsDiff

program to create the difference between two digital elevation models as: Inputfile1 minus Inputfile2

Important parameters: --inFile: Inputfile1,Inputfile2 --outFile: (optional)

e.g. opalsDiff -inFile G105ALL.tif,G106ALL.tif

 $\rightarrow$  Creates file diff\_G105ALL\_G106ALL.tif







### Exercise Data – Schönbrunn 2004

- Location: Schönbrunn, Vienna
- Acquisition date: 30.08.2004
- Scanner: Riegl LMS-Q560 Fullwave Scanner
- Flight lines: 11 strips, 1 Punkt/m<sup>2</sup>, strip overlap >60%,
  - 2 Folders:
  - SB2004.R0 raw data
  - SB2004 fine georef
  - 4 strips are selected





## Workflow: Hands-on opals

View data, e.g. By SCOP.GVE Processing steps:

- Import
  - opalsImport
- Pointdensity
  - opalsCell , opalsZzcolor
- DSM
  - opalsGrid, opalsZcolor, opalsShade
- Mask
  - opalsAlgebra
- Difference model
  - opalsDiff
- Repeat the processing steps with the fine-georeferenced data (see SB2004)

#### see $\rightarrow$ run\_all.bat



### **Results: Point density**



#### **Opals Palette**

#### "Scaleable Density Palette"

Hint on rows in palette definition: all values v

| Value | Color         |  |
|-------|---------------|--|
| BG    | 194, 194, 194 |  |
|       |               |  |
| UF    | 242, 12, 12   |  |
| 0.500 | 242, 161, 12  |  |
| 0.750 | 242, 229, 12  |  |
| 1.000 | 161, 200, 40  |  |
| 2.000 | 100, 165, 45  |  |
| 3.000 | 45, 135, 47   |  |
| 4.000 | 2, 91, 51     |  |



ADDRESSS training course, 19-28 August 2010, Balaton Limnological Research Institute , Hungary



#### **Result: Strip differences**



#### **Opals Palette**

#### "Scaleable Differen

Hint on rows in palette definitio

| Value  | Color         |  |
|--------|---------------|--|
| BG     | 194, 194, 194 |  |
|        |               |  |
| UF     | 153, 0, 0     |  |
| -0.200 | 235, 61, 0    |  |
| -0.160 | 249, 151, 63  |  |
| -0.120 | 249, 221, 63  |  |
| -0.080 | 255, 254, 182 |  |
| -0.040 | 240, 240, 240 |  |
| 0.000  | 241, 241, 241 |  |
| 0.040  | 208, 254, 202 |  |
| 0.080  | 128, 219, 149 |  |
| 0.120  | 41, 171, 136  |  |
| 0.160  | 2, 132, 140   |  |
| 0.200  | 0, 68, 144    |  |



ADDRESSS training course, 19-28 August 2010, Balaton Limnological Research Institute , Hungary

